Abstract
Artificial intelligence (AI) holds significant potential to promote sustainability in India and address key challenges in areas such as energy, agriculture, waste management, and climate change. However, its adoption presents unique opportunities and challenges within the Indian context. This article explores how AI can contribute to sustainable development by optimising renewable energy integration, enhancing precision agriculture, and enabling intelligent urban planning. At the same time, it examines barriers such as high computing costs, data shortages, ethical concerns, and inadequate digital infrastructure. The study highlights India’s growing AI initiatives, including government policies, private-sector innovations, and state-level guidelines, while emphasizing that it requires energy-efficient AI models and better system integration. The paper concludes that coordinated efforts by policymakers, researchers, and industry leaders are crucial to harness the full potential of AI for a sustainable future in India.
References
- Doran NM, Badareu G, Doran MD, Enescu M, Staicu AL, Niculescu M. Greening automation: Policy recommendations for sustainable development in AI-driven industries. Sustainability. 2024 Jun 8;16(12):4930. https://doi.org/10.3390/su16124930
- Kanjilal P, Karmakar S, Ray N, Maity B, Basu S. Harnessing AI for Sustainable Future Tourism Industry. International Journal of Advances in Business and Management Research (IJABMR). 2025 Sep 12;3(1):22-34. https://doi.org/10.62674/ijabmr.2025.v3i01.003
- Omitaomu OA, Niu H. Artificial intelligence techniques in smart grid: A survey. Smart Cities. 2021 Apr 22;4(2):548-68. https://doi.org/10.3390/smartcities4020029
- Kamilaris A, Kartakoullis A, Prenafeta-Boldú FX. A review on the practice of big data analysis in agriculture. Computers and electronics in agriculture. 2017 Dec 1; 143:23-37. https://doi.org/10.1016/j.compag.2017.09.037
- Gemme G, Grossi M, Ferraro D, Vallecorsa S, Sassetti M. IBM quantum platforms: A quantum battery perspective. Batteries. 2022 May 14;8(5):43. https://doi.org/10.3390/batteries8050043
- Kaza S, Yao L, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications; 2018 Dec 12.
- Raimi D, Zhu Y, Newell RG, Prest BC, Bergman A. Global energy outlook 2023: sowing the seeds of an energy transition. Resour. Future. 2023 Mar;1(1):1-44.
- Brynjolfsson E, Mcafee AN. Artificial intelligence, for real. Harvard business review. 2017 Jul;1(1):1-31.
- Strubell E, Ganesh A, McCallum A. Energy and policy considerations for modern deep learning research. InProceedings of the AAAI conference on artificial intelligence 2020 Apr 3 (Vol. 34, No. 09, pp. 13693-13696). https://doi.org/10.1609/aaai.v34i09.7123
- Ajao OR. Optimizing Energy Infrastructure with AI Technology: A Literature Review. Open Journal of Applied Sciences. 2024 Dec 3;14(12):3516-44. https://doi.org/10.4236/ojapps.2024.1412230
- Ahmad T, Zhang D, Huang C, Zhang H, Dai N, Song Y, Chen H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of cleaner production. 2021 Mar 20; 289:125834. https://doi.org/10.1016/j.jclepro.2021.125834
- Smart EE, Olanrewaju LO, Usman J, Otaru K, Umar D. Artificial Intelligence (AI) in renewable energy forecasting and optimization. renewable energy. 2025; 10:11. https://doi.org/10.30574/wjaets.2025.15.2.0300
- Mohanty SP, Hughes DP, Salathé M. Using deep learning for image-based plant disease detection. Frontiers in plant science. 2016 Sep 22; 7:215232. https://doi.org/10.3389/fpls.2016.01419
- Van Klompenburg T, Kassahun A, Catal C. Crop yield prediction using machine learning: A systematic literature review. Computers and electronics in agriculture. 2020 Oct 1;177:105709. https://doi.org/10.1016/j.compag.2020.105709
- Goap A, Sharma D, Shukla AK, Krishna CR. An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and electronics in agriculture. 2018 Dec 1;155:41-9. https://doi.org/10.1016/j.compag.2018.09.040
- Nuortio T, Kytöjoki J, Niska H, Bräysy O. Improved route planning and scheduling of waste collection and transport. Expert systems with applications. 2006 Feb 1;30(2):223-32. https://doi.org/10.1016/j.eswa.2005.07.009
- Brunner PH, Rechberger H. Waste to energy–key element for sustainable waste management. Waste management. 2015 Mar 1;37:3-12. https://doi.org/10.1016/j.wasman.2014.02.003
- Jia T, Kapelan Z, De Vries R, Vriend P, Peereboom EC, Okkerman I, Taormina R. Deep learning for detecting macroplastic litter in water bodies: A review. Water Research. 2023 Mar 1;231:119632. https://doi.org/10.1016/j.watres.2023.119632
- Diyin Z, Bhaumik A. The Impact of Artificial Intelligence on Business Strategy: A Review of Theoretical and Empirical Studies in China. International Journal of Advances in Business and Management Research (IJABMR). 2025 Mar 12;2(3):9-17. https://doi.org/10.62674/ijabmr.2025.v2i03.002
- Parvathareddy S, Yahya A, Amuhaya L, Samikannu R, Suglo RS. A Hybrid Machine Learning and Optimization Framework for Energy Forecasting and Management. Results in Engineering. 2025 May 23:105425. https://doi.org/10.1016/j.rineng.2025.105425
- Agarwal JD, Agarwal A. NITI Aayog’s INDIA–Three year action agenda 2017-18 to 2019-20: Review and analysis. Aestimatio: The IEB International Journal of Finance. 2018(16):142-63.
- TEKER D, ORMAN I. SUSTAINABILITY OF AGRICULTURE: AGRITECH PRACTICES. Journal of Global Strategic Management. 2023 Dec 1;17(2).
- Tanis AH. The Ocean Cleanup Barrier. Retrieved from: https://theoceancleanup.com/
- Desai BH. 14. United nations environment programme (UNEP). Yearbook of International Environmental Law. 2020 Dec 1;31(1):319-25. https://doi.org/10.1093/yiel/yvab060
- Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM computing surveys (CSUR). 2021 Jul 13;54(6):1-35. https://doi.org/10.1145/3457607
- Schwartz R, Dodge J, Smith NA, Etzioni O. Green ai. Communications of the ACM. 2020 Nov 17;63(12):54-63. https://doi.org/10.1145/3381831
- Wang Z, Li Y, Wang K, Cain J, Salami M, Duffy DQ, Little MM, Yang C. Adopting GPU computing to support DL-based Earth science applications. International Journal of Digital Earth. 2023 Oct 2;16(1):2660-80. https://doi.org/10.1080/17538947.2023.2233488
- Schwab K. The Global Competitiveness Report 2014–2015. Geneva: World Economic Forum; 2015. Retrieved from: https://www3.weforum.org/docs/WEF_GlobalCompetitivenessReport_2014-15.pdf
- Hutapea RT, Ramadhan RP, Meity AT, Ngongo Y. Competitiveness of Indonesian Rice prices in the international market. InE3S Web of Conferences 2022 (Vol. 361, p. 01016). EDP Sciences. https://doi.org/10.1051/e3sconf/202236101016












