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Abstract 

Solar energy has gained considerable attention in recent years due to the pressing need to minimize carbon 

emissions and fight climate change. Photovoltaic (PV) solar cells are crucial in the harvesting of solar energy, but 

their efficiency and longevity potential is subjected to the effects of defects (e.g., microcracks, finger 

interruptions). Identifying and diagnosing these defects is crucial for keeping systems running in optimal 

performance. Although current systems can achieve good performance using Convolutional Neural Networks 

(CNNs) with encoder-decoder structures, they do not perform well when modelling long-range dependencies, 

e.g., in situations with complex backgrounds or ambiguous pseudo-defects. Transformers are good at capturing

global dependencies at the cost of losing fine-grained local structural information. In detail, this paper presents a

hybrid model of CNNs and transformers to eliminate the limitations of existing SSL techniques by leveraging the

strength of EfficientNet and transformers architectures. This design integrates local and global features to enhance

defect detection capabilities, offering a robust solution for improving the performance and reliability of

photovoltaic systems.

Keywords: Solar Cells, Photovoltaic Systems, Electroluminescence Imaging, Defect Detection, Deep Learning, 

Vision Transformers. 

Introduction 

Solar power is the silver lining among the renewable energy resources Manisha Singh Solar energy has emerged as the 

foundation of the renewable energy resources and has garnered global recognition and a solution to reduce carbon 

emissions and combat climate change [1][2]. It is a certain of several energy supply sources which is clean, renewable, 

and abundant and plays a significant role in supplying the growing demand for energy worldwide. This is because 

using solar energy harnesses advanced photovoltaic (PV) systems that convert sunlight to electrical energy. However, 

due to a range of operational and environmental conditions, reaching the optimal utilization of solar energy remains a 

perennial issue [5].  

Solar energy harnessed through photovoltaic systems can experience degradation, efficiency losses, and sensitivities 

to the environment. The influence of surface defects in solar cells such as microcracks and finger interruptions are 

significant contributors to the performance and reliability of PV modules [6][4]. Such defects are usually caused from 

manufacturing defects, thermal or environmental stress, or improper handling lead to decreased energy output and 

reliability of the solar panels as time progresses. Resolving these challenges is crucial for the sustainable success of 

solar technology.  

Many defect detection methods need to be developed and further improved to keep PV systems working effectively 

[3]. Conventional inspection methods tend to be manual and highly error-prone, whereas advanced approaches that 

utilize deep learning and computer vision indicate a more promising future. It covers early identification of defects in 
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the component as well as process quality monitoring making it a must-have to have automated defect detection 

incorporated in PV modules [9].  

1.2 Overview of Photovoltaic Systems  

The photovoltaic effect is used to convert sunlight into electricity and solar cells are the basic components or building 

blocks of these modules. Such cells are composed of semiconductor components, most commonly in the form of 

silicon, which generates an electrical current upon exposure to light [7][11]. The goal of PV modules is to capture as 

much light as efficiently as possible and to protect the p-n junction from outside elements. Engine design, as the core 

of energy conversion efficiency, is a determining factor in stability performance [8].  

Solar cells are broadly classified as a polycrystalline or a monocrystalline depending upon their material structure. 

Monocrystalline cells are created from a single crystal formation of silicon and have higher efficiency and durability 

in the long term; in contrast, polycrystalline cells are made from the aggregate of several silicon crystals, making them 

a more economical option with marginally lower efficiency [15][17]. So, we can use all of these PV versions among 

us, which is why we have more benefit and greater use, and you can use this framework across per power multiple 

industries.  

Solar photovoltaic systems are key to the evolution of renewable electricity generation, and the global shift away from 

fossil fuel energy generation [10][12]. Clean, sustainable, and suitable for decentralisation to lessen reliance on finite 

sources, their impact is minimal on the environment. As the demand for clean energy has intensified, the field of high-

efficiency PV system design and deployment has been at the frontiers of renewable energy technology [14].  

1.3 Defects in Solar Cells 

Microcracks are one of the most common defects found in solar cells, and they are commonly introduced during 

mechanical stress in the manufacturing, handling, or installation process. These tiny, invisible fractures can spread over 

time, disrupting the conductive pathways and diminishing the cell’s electrical productivity. Likewise, glass cracks, 

which develop in its protective layer, not only weaken the structural integrity of the module but also have the potential 

to expose the underlying cells to environmental threats, driving degradation [16].  

A hotspot occurs when certain areas of a solar cell are shaded, poorly soldered or have faulty bypass diodes, and cause 

parts of the customers’ solar cells to heat up excessively. These localized temperature rises result in non-uniform 

currents that not only result in large inefficiencies but also risk permanently damaging the chip as a whole [20][6]. 

Over time, hotspots may even cause systemic thermal runaway, which creates safety issues, as well as increased 

maintenance costs.  

Resulting defects are detrimental to the efficiency and stability of solar cells, such that they shorten their lifetime and 

energy yield. Microscale cracks and hotspots prevent the uniform flow of electrical current, and glass cracks permit 

moisture and other contaminants to permeate cells. It is important to address these defects to improve the reliability 

and performance of photovoltaic systems, which requires effective detection and mitigation strategies[18].  

1.4  Electroluminescence Imaging for Defect Detection 

Applying voltage to a PV module induces an effect called electroluminescence (EL), where the module inadvertently 

emits infrared light;EL imaging, therefore, is a potent technique for diagnosing defects in PV solar cells. The emitted 

light reveals the internal architecture of the cells, allowing to identify irregularities like microcracks, hotspots or cell 

breakages [21][7]. Figure 1 Non-defective solar cell – an EL image of a non-defective solar cell shows uniform images 

with defects not visible. This homogeneity is indicative of a lack of structural defects and indicates that the cell is 

functioning. This gives EL imaging an important role in the production and maintenance of solar cells due to its high 

resolution for assessment of the health of solar cells and the measurement for monitoring quality [25].  

Figure 2, in contrast, is a defective solar cell for which the EL image shows aberrations including crossed lines as well 

as non-uniformity. These abnormalities are reflective of microscale fissures or structural damage that may greatly 

influence the efficiency and reliability of the cell. EL imaging provides improvements in precision to the traditional 

manual process, allowing for resolution on microscopic defects that a human may miss. This new capability protects 

the entire quality control process at the time of the modules production as well as after their installation, assuring 

optimal performance over time.  
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       Figure 1. Non Defective    Figure 2. Defective

Although it provides detailed insight regarding the sample structure, EL images interpretation is still performed 

manually and is a laborious task that requires expert knowledge, thus restricting the scalability of this technique to 

high-throughput studies. The Challenges mentioned can be mitigated by automating defect detection process through 

ML models like CNN. The combination of CNNs with EL imaging reduces dependence on skilled labor, improves 

scalability and efficiency, and expedites the assessment of defects in large sets of solar modules.  

1.5 Role of Deep Learning in Solar Cell Defect Detection 

Where deep learning, a branch of machine learning, thrives at identifying features in richly structured information. 

Methods like convolutional neural networks (CNNs) have transformed the field of image analysis, empowering systems 

to automatically identify and categorize patterns. These image analysis models are thus well adapted to our analysis of 

electroluminescence images of solar cells and are capable of detecting very complex defect patterns with great accuracy 

[19][1].  

CNNs have a central role in automatically detecting the defects in solar cells. CNNs rely on large datasets of EL images 

to develop feature recognition capabilities to differentiate defective and nondefective cells with high accuracy in terms 

of identification of microcrack, hotspot, or glass crack [8]. At the same time, CNNs can achieve good performance at 

localizing and classifying defects in an image, and have the benefit of not requiring extensive pre-processing (compared 

with classical methods) that can often be time-consuming and difficult to do.  

Deep learning techniques are being applied in solar cell defect detection due to their many advantages such as less 

inspection time, higher accuracy, and the ability to process large data sets. Such techniques facilitate on-the-fly 

assessment, which contributes to preventive maintenance and improved quality assurance [24]. This approach has the 

potential to transform solar energy, ensuring that its functionality can be maintained over time as new imaging 

technologies are developed, and combining them with the power of deep learning, with the potential to analyze vast 

amounts of data.  

1.6 Introduction to Vision Transformers   

Vision Transformers (ViTs) are a breakthrough attack on the computer vision task that are based on the use of self-

attention mechanisms in natural language processing to compute visual data. Unlike traditional convolutional neural 

networks (CNNs) that depend on localized receptive fields, ViTs are applied to patches of an image and treat them as a 

sequence comparable to words in a sentence [22][9]. By modeling the relationships over the whole image, they can learn 

the dependencies, local and global, very well. By dividing images into smaller patches, ViTs transform them into a 

format compatible with transformer architectures, enabling detailed feature extraction and context-aware analysis.  

Vision Transformers have been shown to be among the most powerful architectures since their introduction with the 

ability to capture global dependencies in an image this is often a weakness in CNNs. CNNs are great in finding local 

relationships and textures using the convolutions, but they lack the ability to capture a meaningful relationship in wider 

spatial contexts. ViTs overcome this limitation by using the self-attention mechanism to capture long-range relationships 

between patches, which makes them a good choice for the types of tasks where spatial context is important.  
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The reason is that ViTs and CNNs are complementary in the way that each is trying to address the weaknesses of the 

other [26]. Local-oriented, guided from past interaction patterns, but ViTs learns globally, attention across these bounds, 

thus global box work in any analysis. A good approach to take is a hybrid model, one that combines integrations of both 

these approaches to take advantage of the benefits of both architectures. The connectivity graph shows that in the defect 

detection of solar cells, the ViTs obtain the accurate local area while the CNNs are able to capture the larger structural 

context. Thus, the defect detection can be more stable and reliable.   

 Figure 3. Vision Transformer 

1.7 Hybrid Models for Defect Detection 

In order to leverage their complementary advantages, hybrid models that integrate Convolutional Neural Networks 

(CNNs) and Vision Transformers (ViTs), perform remarkably in defect detection. CNNs are well suited to learning 

localized features like edges and textures that are important for defect types such as microcracks.On the other hand, 

ViTs model global dependencies with self-attention which gives a holistic understanding of structural relationships in 

an image [23][11]. In conjunction, they can overcome the limitations of each approach, forming a solid framework for 

defect detection.  

In those models, detailed local features are extracted with CNNs, which are then processed at the ViTs to capture the 

spatial and contextual relationships. This multilayered architecture is crucial for tracking down defects while maintaining 

an awareness of the whole image context. This combination enhances the ability to identify fine and sparse defects in 

intricate environments of applications such as solar cell defect detection [2].  

Together, CNNs and ViTs, bolstered by challenges such as variation in defect scale and insufficient data, greatly enhance 

accuracy and reliability. Hybrid models balance local sensitivity with global perspective by providing an efficient and 

comprehensive solution for advanced defect detection in critical applications.  

1.8 Challenges in Defect Detection 

The challenge of Defect Detection in Solar Cells: Photograph EL images under different conditions, which results 

differences in lighting and texture, thus leads to difficulties to discriminate defects from noise [7][21]. Such complexities 

result in missed detections or false positives, necessitating models that can accurately address various visual contexts.  

On the other hand, there exists a lack of annotated datasets for small defects such as microcracks and hotspots. The lack 

of data and class imbalance restricts the training of deep learning models consequently limiting their generalized ability 

to generalize effectively to unseen defect types. This issue is further aggravated by the fact that it is labor intensive to 

annotate these sorts of defects [24].  

For the aforementioned problems, accurate and robust models are needed, where hybrid CNN and Vision Transformer 

approaches have been shown to be a strong candidate. Exploiting few-shot learning strategies, domain adaptation 
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methods, or using synthetic datasets can mitigate challenges associated with limited datasets and allow robust detection 

capabilities for defects under real-world conditions [20].  

1.9 Conclusion 

Solar cells defect detection has made a major leap forward with hybrid models integrating the power of CNNs and 

Vision Transformers. These models tackle the challenges of heterogeneous backgrounds and subtle defect patterns by 

harnessing the localized feature extraction power of CNNs together with the global context comprehension capabilities 

of Vision Transformers. Accurate fault detection by drones provides more accurate quality diagnosis, which are 

important to improve the reliability of photovoltaic system.  

The use of hybrid models in defect identification workflows also improves the efficiency of solar cell manufacturing 

and maintenance processes. Such models encourage independence from manual audits which are time-consuming, prone 

to error, and scalable in terms of detecting the non-compliant entities in larger datasets. It not only increases production 

throughput, but also minimizes energy losses from undetected defects, making solar energy generation more sustainable 

as a result.  

Hybrid models serve as an automobile-based defect detection solution, with tremendous potential to enhance the state-

of-the-art solar energy technology. The adoption of these components in the industry is facilitating superior efficiency 

and stability in photovoltaic systems and will drive renewable energy development. These models are expected to keep 

improving as research goes on, and could further change the solar energy landscape and allow a brighter future.  
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