OPEN ACCESS

Kavya Gandikota Original Article

TKR Institute of Management and Science, 500097 Hyderabad, India

*Corresponding Author's Email: kavyagandikotall@gmail.com

Abstract

The study discusses the role that CE plays in creating a better future. The main objective of this paper is to discuss how the circular economy (CE) has been applied to sustain natural resources, strengthen economies, and promote global resource efficiency by transitioning from traditional models to sustainable business models. As discussed in this paper, the issues and opportunities of circular economy (CE) applications in industries are presented based on a thorough literature review of peer-reviewed research articles, case studies, and institutional databases. The study emphasises the need to equitably share the planet's limited natural resources. It examines several implementation barriers to the circular economy (CE) and proposes innovative solutions for integrating CE concepts into business operations through creative approaches. The paper highlights the long-term benefits of CE, arguing that sustainable entrepreneurship, Eco innovation, and resource optimisation can drive global economies toward environmental conservation and financial sustainability. Furthermore, the study underscores the urgency of adopting concerted measures to ensure that future generations inherit balanced and sustainable ecosystems. Previous studies have shown that implementing sustainable structures adds value to products and minimizes waste generation, thereby contributing to economic stability. Such transformative changes will help secure a healthy and balanced ecosystem for future generations. The research is based on case studies and scholarly articles focusing on cooperative strategies among communities, businesses, and governments, reflecting the collaborative essence of CE implementation.

Keywords: Climate Crisis; Circular Economy (CE); Economic Transformation; Green Innovation; Sustainable Development

Introduction

As living beings, we must be more conscious of the precious resources available on our planet and adopt responsible approaches toward their use, restoration, and preservation. The Ellen MacArthur Foundation emphasises the importance of considering the long-term consequences of our actions and adopting precautionary, conservation-oriented measures to ensure the safety and well-being of both current and future generations [1]. The establishment of the circular economy's (CE) model has empowered governments and organisations to pursue a transformational approach to sustainable development.

CE practices aim to reduce production costs by transforming waste into valuable resources, thereby addressing budget constraints and enhancing product profitability. However, many traditional business enterprises still prioritise short-term profits over long-term sustainable designs, which often results in increased waste generation during production and product launches [2].

Environmentally sustainable growth has also been incorporated into India's economic policies. This is reflected in the 2023–2024 Budget Report, where the Ministry of Finance identified "green development" as a key national priority [3]. Furthermore, effective coordination among nations, global organisations, and regional governments is essential for managing CE initiatives and commitments. Nevertheless, these efforts also reveal challenges related to community engagement and policy alignment [4].

The Cradle-to-Cradle innovation framework says that all materials used in business and industry can be put into one of two main groups: biological nutrients or technical nutrients. Each group is meant to have a positive effect on the environment [3].

This paper examines the current state of economic sustainability within business models and explores improvement strategies for advancing sustainable development in the future.

Literature Review

The study employs a secondary data-driven methodology that draws upon journals, articles, and case studies to critically review the global implementation of the circular economy (CE). Through the systematic extraction of results from peer-reviewed research articles, this study lays a strong foundation for conceptualising effective CE strategies. Academic rigour has been ensured by utilising reputable institutional databases, such as Google Scholar, Scopus, and Web of Science [1].

As the world transitions toward resource-efficient economic models, CE offers a well-structured framework for balancing revenue generation with long-term environmental preservation and social responsibility. It is widely acknowledged that CE stimulates economic growth by reducing material costs, decreasing price volatility through improved supply stability, fostering new entrepreneurial opportunities, and minimising environmental externalities [3]. Among CE strategies, repurposing techniques have gained prominence for their ability to reduce resource consumption while supporting economic stability [4].

Businesses that have successfully implemented CE strategies contribute to the availability of renewable and reusable (RE) resources, thereby strengthening supply chains and promoting equity [5]. Environmentally friendly models increasingly focus on preserving assets for future generations, emphasising that industrial modernisation is not optional but rather a corporate obligation in the ongoing productivity transition process [6]. Recent research has diversified traditional business models, encouraging young entrepreneurs to adopt sustainable approaches. This evolution has fostered adaptability and goal orientation, creating new opportunities through the adoption of sustainable business frameworks that mitigate the climate crisis and promote cleaner energy transitions beneficial to both businesses and society.

Participation in green innovation plays a pivotal role in advancing environmental sustainability. The profitability of CE initiatives depends directly on the responsible utilisation of limited resources and on environmentally sound waste management practices [7]. Collaboration among like-minded individuals committed to sustainability is equally vital for developing successful CE initiatives. However, the absence of widespread collaboration and institutional commitment remains a weakness in current business models, hindering the establishment of a sustainable and prosperous global economy.

Ensuring that relevant information is locally accessible, particularly for younger generations, is critical to increasing awareness and engagement in sustainability initiatives. The growing body of literature on environmentally friendly business models highlights the need for intergenerational asset preservation. The gradual transformation of industries through CE principles has proven instrumental in improving productivity and diversifying business models, enabling emerging entrepreneurs to adopt sustainable solutions more effectively. Many companies have refined these strategies, achieved long-term innovation and sustained environmental and economic balance.

Green innovation continues to play a decisive role in environmental sustainability, particularly by optimising resource use and promoting responsible material disposal [8]. Nevertheless, research indicates that despite progress, significant

obstacles remain in achieving comprehensive sustainability. The implementation of green operational practices has demonstrated success only when supported by collective commitment and administrative innovation from all stakeholders involved.

A fundamental challenge persists in the lack of modern frameworks that fully integrate sustainability principles into business operations. Furthermore, easy access to sustainability-related information for the younger generation must be ensured at the local level. According to the European Commission [9], securing the future has become increasingly difficult due to ongoing financial instability and fragile economic systems, which constrain national growth by limiting budget allocations, public expenditure, and investment in emerging opportunities. Similarly, [10] reports that two consecutive years of recession have erased two decades of budget growth in some countries. During this period, fiscal consolidation led to a median contraction of 7% of GDP and reduced national debt to nearly 80% of GDP.

The current European context reflects a more complex scenario, with the European Union (EU) navigating continuous challenges, including the digital transformation of markets, the effects of global crises, and evolving societal demands within member states [8]. These factors collectively underscore the pressing need for systemic adaptation through sustainable, circular models that align economic recovery with environmental responsibility.

Methodology

Research Design

This study examines the incorporation of the circular economy (CE) model, its applications across diverse industries, and its operational mechanisms. To evaluate how recycling and eco-friendly practices contribute to environmental protection and the sustainable management of natural resources, the study analyses data from previous research works, case studies, and scholarly articles. Adopting a well-structured methodological approach, the research assesses the effectiveness and adaptability of various eco-friendly business models and categorises findings into three major dimensions: waste reduction, which focuses on minimising material wastage; **eco-**innovation, which emphasises the development and adoption of new green technologies; and optimal resource utilisation, which ensures efficient and responsible use of resources within organisations [11].

By systematically reviewing the existing literature, the study provides a comprehensive evaluation of CE models, synthesising insights from multiple sources to highlight their long-term benefits and practical implications for organisations, policymakers, and environmental practitioners [12]. Using a thematic analysis framework, the study further explores the applications, challenges, and contributions of CE to business sustainability, focusing on its capacity to foster innovation, reduce waste, and optimise resources. This structured analytical approach ensures a consistent assessment of CE's overall impact on environmental preservation and economic resilience.

Data Collection

Sources for data collection include reviewed publications, organizational research studies, and industry surveys, all of which contribute to understanding and supporting sustainable economic development [13, 14]. It also combines both secondary and primary information, such as policy documents and academic articles, including case studies. Additionally, the study evaluates the impact of laws, regulations, and business case studies on long-term financial progress.

One of the main reasons for putting hustlers' ideas into practice is that it focuses on comprehending how present industries are changing and how companies may embrace the CE to make a difference without changing the resources or the new ideologies. Innovative techniques, which include shared platforms as well as rental and product-as-a-service, are discussed. Technology assistance for material monitoring, optimisation of resources, and reused and recycled forms [1] is essential. Resilience depends extensively on a business's ability to react to changes and events, showcasing whether companies remain able to function successfully and efficiently during challenges, while indicating the importance of firms achieving success by creating long-lasting value.

Table 1: List of circular practices in business model adapted from secondary sourced journals

Sl. No	Circular Practices	Brief Description	References
1	Adoption of 3Rs (Reduce, Reuse, Recycle)	Organisations should integrate reduce, reuse, remanufacture, and recycling practices to achieve circular economic goals.	Bakker et al. [3]; Esbensen & Velis [12]; Saidani et al. [15]; Van Loon et al. [16]
2	Legislation and policies for circular economy	Governments should introduce laws and policies to promote circular economic adoption.	MacArthur [17]; van Loon et al. [16]; Hool et al. [8]
3	Developing a circular culture	Organisations should cultivate a circular culture through management practices and monitoring circular activities.	Lewandowski [18]; Geissdoerfer et al. [19]
4	Consumer awareness	Awareness programs should educate customers about circular economic practices and their environmental impacts.	Lieder & Rashid [20]; Mugge [21]; Hool et al. [8]
5	Cascading use of components and materials	The focus is on enhancing cascading use of components and materials for sustainability.	De Angelis et al. [22]; Elia et al. [23]; Govindan & Hasanagic [24]; Zhao et al. [25]
6	Performance evaluation incorporating environmental factors	Internal performance evaluation systems should include environmental criteria for better business outcomes.	Mesa et al. [26]; Masi et al. [27]; Murgante et al. [11]
7	Cross-functional collaboration	Interdepartmental collaboration should support environmental improvements across the business.	Masi et al. [27]; Zhao et al. [25]
8	Workforce training on circular practices	Employees should receive training in circular practices and environmental issues.	Masi et al. [27]; Sandin & Peters [28]
9	Implementation of reverse logistics	Establishing reverse logistics networks to collect products after their use and the end of their functional life.	Esbensen & Velis [12]; Larsen et al. [29]; Batista et al. [30]
10	Designing products for circularity	Products should be designed to reduce material and energy consumption while allowing reuse/recovery at the component level.	Ellen MacArthur Foundation [31]; Gaustad et al. [32]; Franco [33]

11	Environmental criteria for supplier selection	Supplier selection should consider environmental criteria alongside economic factors.	Masi et al. [27]; Lacroix et al. [34]; Theeraworawit et al. [2]
12	Process design for waste minimization	Production processes should minimise waste throughout the value chain.	Ajayi et al. [35]; Petchwattana et al. [36]; Mahpour [37]
13	Renewable materials and energy utilization	Renewable materials and energy should be used in supply chain operations, particularly in production processes.	Masi et al. [27]; Zhao et al. [25]; Elia et al. [23]
14	Supply chain partner awareness	Supply chain partners should be aware of circular practices to enhance adoption and contribute to sustainability.	van Weelden et al. [38]; Hool et al. [8]

Source: Collected by Author

The above Table 1 illustrates the sequential growth of Circular Economy (CE) practices, showcasing how firms have advanced from foundational sustainability principles, such as the 3Rs and product design, to broader implementation and coherence at the policy level. The growing interest in regulatory constraints, client relationships, and operational effectiveness is evident in studies conducted from the early years to more recently published work between 2010 and 2020.

Result

The excessive extraction of natural materials and the irresponsible disposal of limited resources have led to severe environmental degradation, including climate pollution, toxic gas emissions, and ecological crises, all of which threaten the planet's natural balance [6]. These challenges emphasise how important it is to conserve and restore the Earth's valuable resources. Overexploitation and depletion of natural materials reduce their availability for future use and exert disposal-orientated negative economic impacts by increasing resource prices and disrupting supply chains. Moreover, the disposal-orientated nature of traditional linear production models contributes significantly to waste generation and environmental pollution [7, 39].

To counter these issues, the implementation of circular loop models—founded on principles of repurposing and resource recovery—can enhance both resource management and system resilience. A greater emphasis on reusable energy sources and biodegradable materials can substantially decrease dependency on non-renewable resources [40]. Furthermore, CE practices promote eco-efficiency, which yields multiple benefits such as increased financial viability, job creation, reduced resource consumption and waste, improved resource security, and greater price stability [7, 8, 15].

As suggested by [12], eco-efficiency can also be partially achieved in linear economies through improved resource utilisation and waste minimisation. However, achieving full ecological sustainability requires more transformative circular practices. Governments must play a proactive role by enforcing environmental regulations that safeguard natural assets and promote responsible production and consumption patterns [41, 42]. Equally important is fostering public awareness regarding sustainable consumption behaviours, such as reducing waste, choosing durable products, and actively participating in conservation initiatives.

Discussion

A significant reduction in environmental pollution—by as much as 45% by 2030—could be achieved through the adoption of repurposing strategies and the efficient allocation and utilisation of natural resources. These measures hold the potential to achieve air neutrality within the next two decades [3]. The integration of artificial intelligence (AI) in

material management processes can further enhance optimal resource utilisation and strengthen circular economy (CE) systems by enabling transparent, data-driven monitoring of waste and pollution levels [6, 43].

The shift toward innovative and technology-driven practices empowers businesses to develop profitable yet eco-friendly models, improving product quality, operational efficiency, and working conditions. This transformation attracts long-term investment in responsible practices and embeds sustainability as a central pillar of economic growth and environmental improvement [44].

Life Cycle Assessment (LCA) serves as a critical tool for evaluating sustainability across all stages of production—from manufacturing to utilisation and disposal. LCA offers insightful perspectives on applying circular principles to reduce environmental impact while contributing to economic and social welfare [7]. In the food production sector, efficient resource recovery and waste minimisation strategies have become integral to addressing climate change and ensuring global food security [45].

Repurposing resources and materials mark a fundamental shift from conventional consumption models to eco-conscious production systems. Implementing CE strategies is essential to foster long-term change and ensure the sustainable maintenance of natural assets, guaranteeing their continued availability and economic longevity. Beyond conserving resources, CE practices stimulate employment generation, innovation, and economic stability, reinforcing the synergy between environmental protection and economic prosperity.

Initiatives led by organisations such as the Ellen MacArthur Foundation demonstrate the potential for coordinated policies and investments to expand CE adoption, particularly in emerging economies. Advancing CE development requires strong partnerships among educational institutions, policymakers, and business leaders. Collaboration in technological innovation and the creation of supportive policy frameworks can accelerate the global transition toward circularity and align with broader environmental and sustainability goals. Enhanced cooperation fosters knowledge exchange simplifies investments in innovative CE solutions and supports long-term environmental and economic resilience.

Conclusion

The transition to a circular economy (CE) represents more than just an ecological adjustment—it is a fundamental shift toward ensuring the durability of resources and promoting environmental responsibility. Supporting CE initiatives contributes to resource liquidity, encourages the efficient use of materials, and fosters eco-innovation that drives sustainable industrial transformation.

To ensure effective production and responsible consumption, businesses and communities must collaborate by rethinking their operational and behavioural patterns. Successful CE implementation requires the integration of sustainable principles into economic frameworks, where businesses prioritise repurposing strategies and innovative designs to minimise waste. At the same time, governments and regulatory authorities must establish and enforce robust policies that incentivise the real-time adoption of CE practices.

The increasing consumer demand for eco-friendly products serves as a major driving force behind ethical market transformation. Through the adoption of loop-based systems, industries can secure long-term environmental preservation and achieve economic resilience, ensuring a balance between profitability, resource efficiency, and sustainability.

Author Contributions: The author solely contributed to the conceptualization, research, writing, and revision of this manuscript.

Institutional Review Board Statement: This study did not involve human participants or require ethical approval from an Institutional Review Board.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Informed Consent Statement: This study did not involve human participants requiring informed consent.

Data Availability Statement: The data supporting the findings of this study are available within the article and its referenced sources. No additional datasets were generated or analyzed during this study.

Conflict of Interest: The author declares no conflicts of interest related to this research.

Acknowledgement: No individuals or organizations outside of the listed authors contributed to this research in a capacity that requires acknowledgment.

References

- 1. Korhonen J, Honkasalo A, Seppälä J. Circular economy: the concept and its limitations. Ecological economics. 2018 Jan 1;143:37-46. https://doi.org/10.1016/j.ecolecon.2017.06.041
- 2. Theeraworawit M, Suriyankietkaew S, Hallinger P. Sustainable supply chain management in a circular economy: a bibliometric review. Sustainability. 2022 Jul 29;14(15):9304. https://doi.org/10.3390/su14159304
- 3. Bakker C, Wang F, Huisman J, Den Hollander M. Products that go round: exploring product life extension through design. Journal of cleaner Production. 2014 Apr 15;69:10-6. https://doi.org/10.1016/j.jclepro.2014.01.028
- 4. Rahuma A, Fethi S. A new approach to evaluate environmental strategy: Empirical evidence from international petroleum companies using the balanced scorecard model. Business Strategy and the Environment. 2022 Nov;31(7):3152-65. https://doi.org/10.1002/bse.3068
- 5. Jensen FJ. Rethinking royalties: alternative payment systems on music streaming platforms. Journal of Cultural Economics. 2024 Sep;48(3):439-62. https://doi.org/10.1007/s10824-024-09507-z
- 6. Berger M. Introduction to Special Issue'Collecting Latin America'. Journal for art market studies. 2023 Dec 21;7(1). https://doi.org/doi:10.23690/jams.v7i1.151
- 7. Elsawy M, Youssef M. Economic sustainability: Meeting needs without compromising future generations. International Journal of Economics and Finance. 2023;15(10):23-31. https://doi.org/10.5539/ijef.v15n10p23
- 8. Hool A, Schrijvers D, Blengini GA, Chen WQ, Dewulf J, Eggert R, van Ellen L, Gauss R, Goddin J, Habib K, Hagelüken C. A review of methods and data to determine raw material criticality. Resources, Conservation and Recycling. 2020 Jan 27. https://doi.org/10.1016/j.resconrec.2019.104617
- 9. Domenech T, Bahn-Walkowiak B. Transition towards a resource efficient circular economy in Europe: policy lessons from the EU and the member states. Ecological Economics. 2019 Jan 1; 155:7-19.https://doi.org/10.1016/j.ecolecon.2017.11.001
- Bocken NM, Short SW. Transforming business models: towards a sufficiency-based circular economy. InHandbook of the circular economy 2020 Dec 15 (pp. 250-265). Edward Elgar Publishing. https://doi.org/10.4337/9781788972727.00028
- 11. Murgante B, Salmani M, Molaei Qelichi M, Hajilo M. a multiple criteria decision-making approach to evaluate the sustainability indicators in the villagers' lives in Iran with emphasis on earthquake hazard: a case study. Sustainability. 2017 Aug 22;9(8):1491. https://doi.org/10.3390/su9081491

- 12. Esbensen KH, Velis C. Transition to circular economy requires reliable statistical quantification and control of uncertainty and variability in waste. Waste Management & Research. 2016 Dec;34(12):1197-200. https://doi.org/10.1177/0734242X16680911
- 13. Shrishti K, Chowdhury PR. A Look at How Climate Bonds Can Help Emerging Markets Grow Their Economy-An Analysis Based on Newly Industrialised Countries (NICs). International Journal of Advances in Business and Management Research (IJABMR). 2025 Jun 12;2(4):10-8. https://doi.org/10.62674/ijabmr.2025.v2i04.002
- 14. Chaudhary R, Kumar C. Innovations and eco-sustainability: exploring the role of organizational environment. Social Responsibility Journal. 2022 Aug 3;18(6):1069-88. https://doi.org/10.1108/SRJ-12-2020-0497
- 15. Saidani M, Kendall A, Yannou B, Leroy Y, Cluzel F. Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators. Journal of Industrial Ecology. 2019 Oct;23(5):1143-58. https://doi.org/10.1111/jiec.12852
- van Loon MP, Hijbeek R, Ten Berge HF, De Sy V, Ten Broeke GA, Solomon D, van Ittersum MK. Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa on greenhouse gas emissions and food security. Global change biology. 2019 Nov;25(11):3720-30. https://doi.org/10.1111/gcb.14783
- 17. MacArthur E. Towards the circular economy. Journal of industrial ecology. 2013;2(1):23-44.
- 18. Lewandowski M. Designing the business models for circular economy—Towards the conceptual framework. Sustainability. 2016 Jan 18;8(1):43. https://doi.org/10.3390/su8010043
- 19. Geissdoerfer M, Savaget P, Bocken NM, Hultink EJ. The Circular Economy–A new sustainability paradigm?. Journal of cleaner production. 2017 Feb 1;143:757-68. https://doi.org/10.1016/j.jclepro.2016.12.048
- 20. Lieder M, Rashid A. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of cleaner production. 2016 Mar 1;115:36-51. https://doi.org/10.1016/j.jclepro.2015.12.042
- 21. Mugge R. Product design and consumer behaviour in a circular economy. Sustainability. 2018 Oct 16;10(10):3704. https://doi.org/10.3390/su10103704
- 22. De Angelis R, Howard M, Miemczyk J. Supply chain management and the circular economy: towards the circular supply chain. Production Planning & Control. 2018 Apr 26;29(6):425-37. https://doi.org/10.1080/09537287.2018.1449244
- 23. Elia V, Gnoni MG, Tornese F. Measuring circular economy strategies through index methods: A critical analysis. Journal of cleaner production. 2017 Jan 20;142:2741-51. https://doi.org/10.1016/j.jclepro.2016.10.196
- 24. Govindan K, Hasanagic M. A systematic review on drivers, barriers, and practices towards circular economy: a supply chain perspective. International journal of production research. 2018 Jan 17;56(1-2):278-311. https://doi.org/10.1080/00207543.2017.1402141
- 25. Zhao L, Hong Q, Wang X. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor. Neurocomputing. 2018 Nov 7;314:207-14. https://doi.org/10.1016/j.neucom.2018.06.062

- 26. Mesa J, Esparragoza I, Maury H. Developing a set of sustainability indicators for product families based on the circular economy model. Journal of cleaner production. 2018 Sep 20;196:1429-42. https://doi.org/10.1016/j.jclepro.2018.06.131
- 27. Masi D, Kumar V, Garza-Reyes JA, Godsell J. Towards a more circular economy: exploring the awareness, practices, and barriers from a focal firm perspective. Production Planning & Control. 2018 Apr 26;29(6):539-50. https://doi.org/10.1080/09537287.2018.1449246
- 28. Sandin G, Peters GM. Environmental impact of textile reuse and recycling—A review. Journal of cleaner production. 2018 May 20;184:353-65. https://doi.org/10.1016/j.jclepro.2018.02.266
- 29. Larsen HC, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, Klaus A, Alvarez-Zarikian CA, Boaga J, Bowden SA, Briais A. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience. 2018 Oct;11(10):782-9. https://doi.org/10.1038/s41561-018-0198-1
- 30. Batista L, Bourlakis M, Smart P, Maull R. In search of a circular supply chain archetype—a content-analysis-based literature review. Production Planning & Control. 2018 Apr 26;29(6):438-51. https://doi.org/10.1080/09537287.2017.1343502
- 31. Ellen MacArthur Foundation. Circular economy overview [Internet]. 2024 Aug 21 [cited 2025 June 24]. Retrieved from: https://ellenmacarthurfoundation.org/
- 32. Gaustad G, Krystofik M, Bustamante M, Badami K. Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling. 2018 Aug 1;135:24-33. https://doi.org/10.1016/j.resconrec.2017.08.002
- 33. Franco L. The 2019 European election: How anti-Europeans plan to wreck Europe and what can be done to stop it.
- 34. Lacroix D, Laurent L, De Menthière N, Schmitt B, Béthinger A, David B, Didier C, Du Châtelet JP. Multiple visions of the future and major environmental scenarios. Technological forecasting and social change. 2019 Jul 1;144:93-102. https://doi.org/10.1016/j.techfore.2019.03.017
- 35. Ajayi SO, Oyedele LO, Akinade OO, Bilal M, Alaka HA, Owolabi HA, Kadiri KO. Attributes of design for construction waste minimization: A case study of waste-to-energy project. Renewable and Sustainable Energy Reviews. 2017 Jun 1;73:1333-41. https://doi.org/10.1016/j.rser.2017.01.084
- 36. Petchwattana N, Channuan W, Naknaen P, Narupai B. 3D printing filaments prepared from modified poly (lactic acid)/teak wood flour composites: An investigation on the particle size effects and silane coupling agent compatibilisation. Journal of Physical Science. 2019;30(2):169-88. https://doi.org/10.21315/jps2019.30.2.10
- 37. Mahpour A. Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resources, conservation and recycling. 2018 Jul 1;134:216-27. https://doi.org/10.1016/j.resconrec.2018.01.026
- 38. Van Weelden E, Mugge R, Bakker C. Paving the way towards circular consumption: exploring consumer acceptance of refurbished mobile phones in the Dutch market. Journal of Cleaner Production. 2016 Feb 1;113:743-54. https://doi.org/10.1016/j.jclepro.2015.11.065

- 39. Yang M, Chen L, Wang J, Msigwa G, Osman AI, Fawzy S, Rooney DW, Yap PS. Circular economy strategies for combating climate change and other environmental issues. Environmental chemistry letters. 2023 Feb;21(1):55-80. https://doi.org/10.1007/s10311-022-01499-6
- 40. Yuhuan J, Hans E. High-Performance and Transportable Materials: Analyzing Characteristics and Applications in Sustainable Construction. International Journal of Advances in Business and Management Research (IJABMR). 2025 Mar 12;2(3):1-8. https://doi.org/10.62674/ijabmr.2025.v2i03.001
- 41. UN Environment. Global Environment Outlook-GEO-6. Cambridge University Press; 2019.
- 42. Zhao Y. China in transition towards a circular economy: from policy to practice. Journal of Property, Planning and Environmental Law. 2020 Sep 22;12(3):187-202. https://doi.org/10.1108/JPPEL-03-2020-0014
- 43. Mondragon AE, Mondragon CE, Hogg PJ, Rodríguez-López N. A design process for the adoption of composite materials and supply chain reconfiguration supported by a software tool. Computers & Industrial Engineering. 2018 Jul 1;121:62-72. https://doi.org/10.1016/j.cie.2018.05.022
- 44. Ozen E, Singh A, Taneja S, Rajaram R, Davim JP, editors. Innovating sustainability through digital circular economy. IGI Global; 2024 Dec 2. https://doi.org/10.1108/IJPPM-12-2020-0637
- 45. Stern NH. The economics of climate change: the Stern review. cambridge University press; 2007 Jan 4.

